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 Elements of Information 
Theory 

 By  Thomas M. Cover and 
Joy A. Thomas

 2nd Edition (Wiley)

 Chapters 2, 7, and 8

 1st Edition available at SIIT 
library: Q360 C68 1991
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Recall: Entropy
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 Entropy measures the amount of uncertainty (randomness) 
in a RV.

 Three formulas for calculating entropy:
 [Defn 2.41] Given a pmf ௑ of a RV , 
 𝑯 𝑿 ≡ െ ∑ 𝑝௑ 𝑥௫ logଶ𝑝௑ 𝑥 .

 [2.44] Given a probability vector ,

 𝑯 𝐩ഫ ≡ െ ∑ 𝑝௜௜ logଶ𝑝௜.

 [Defn 2.47] Given a number ,
 𝑯 𝒑 ≡ 𝒉𝒃 𝒑 ൌ െ𝑝logଶ𝑝 െ 1 െ 𝑝 logଶ 1 െ 𝑝

 [2.56] Operational meaning: Entropy of a random variable is 
the average length of its shortest description.

Set 0logଶ0 ൌ 0.

binary 
entropy 
function



Recall: Entropy
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 Important Bounds
 

deterministic ଶ ௑
uniform

 The entropy of a uniform (discrete) random variable:

ଶ ௑
 The entropy of a Bernoulli random variable:

𝒃 ଶ ଶ
 binary entropy function
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Information-Theoretic Quantities
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Information Diagram



Entropy and Joint Entropy
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 Entropy
 ଶ௫
 Amount of randomness in 

 ଶ௬
 Amount of randomness in 

 Joint Entropy

 ଶሺ௫,௬ሻ
 Amount of (combined) randomness in pair 

 In general, 
 There might be some shared randomness between and .

𝐻 𝑋

𝐻 𝑌

𝐻 𝑋, 𝑌

𝑋

𝑌



Conditional Entropies
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𝐻 𝑌 ≡ െ ෍ 𝑞 𝑦 logଶ𝑞 𝑦
௬∈

≡ 𝐻 𝐪

𝐻 𝑌|𝑋 ൌ 𝑥 ≡ 𝐻 𝑌|𝑥 ≡ െ ෍ 𝑄 𝑦|𝑥 logଶ𝑄 𝑦|𝑥
௬∈

𝐻 𝑌|𝑋 ≡ ෍ 𝑝 𝑥 𝐻 𝑌|𝑥
௫∈

Amount of randomness in 𝑌

Amount of randomness still 
remained in 𝑌 when we 
know that 𝑋 ൌ 𝑥.

The average amount of 
randomness still remained in 
𝑌 when we know 𝑋

ൌ  𝐐𝑥

ൌ 𝐻 𝑋, 𝑌 െ 𝐻 𝑋

given a particular value 𝑥

Apply the entropy calculation to a row from the 𝐐 matrix

𝑃 𝑌 ൌ 𝑦

𝑃 𝑌 ൌ 𝑦|𝑋 ൌ 𝑥

average of 𝐻 𝑌|𝑥



Conditional Entropies
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𝐻 𝑌 ≡ െ ෍ 𝑞 𝑦 logଶ𝑞 𝑦
௬∈

≡ 𝐻 𝐪

𝐻 𝑌|𝑋 ൌ 𝑥 ≡ 𝐻 𝑌|𝑥 ≡ െ ෍ 𝑄 𝑦|𝑥 logଶ𝑄 𝑦|𝑥
௬∈

𝐻 𝑌|𝑋 ≡ ෍ 𝑝 𝑥 𝐻 𝑌|𝑥
௫∈

Amount of randomness in 𝑌

Amount of randomness still 
remained in 𝑌 when we 
know that 𝑋 ൌ 𝑥.

The average amount of 
randomness still remained in 
𝑌 when we know 𝑋

ൌ  𝐐𝑥

ൌ 𝐻 𝑌 െ 𝐼 𝑋; 𝑌

ൌ 𝐻 𝑋, 𝑌 െ 𝐻 𝑋

Apply the entropy calculation to a row from the 𝐐 matrix

𝑃 𝑌 ൌ 𝑦

𝑃 𝑌 ൌ 𝑦|𝑋 ൌ 𝑥given a particular value 𝑥

average of 𝐻 𝑌|𝑥



Diagrams [Figure 16]
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𝐴 ∩ 𝐵 𝐵\A

𝐴 ∪ 𝐵

𝐴\B

𝐴

𝐵
Venn Diagram

𝐼 𝑋; 𝑌𝐻 𝑋|𝑌 𝐻 𝑌|𝑋

𝐻 𝑋

𝐻 𝑌

𝐻 𝑋, 𝑌

𝑋

𝑌
Information Diagram

𝑃 𝐴 ∩ 𝐵 𝑃 𝐵\A

𝑃 𝐴

𝑃 𝐵

𝑃 𝐴 ∪ 𝐵

𝑃 𝐴\B

𝐴

𝐵
Probability Diagram
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𝐼 𝑋; 𝑌𝐻 𝑋|𝑌 𝐻 𝑌|𝑋

𝐻 𝑋

𝐻 𝑌

𝐻 𝑋, 𝑌

𝑋

𝑌
Information Diagram

𝑃 𝐴 ∩ 𝐵 𝑃 𝐵\A

𝑃 𝐴

𝑃 𝐵

𝑃 𝐴 ∪ 𝐵

𝑃 𝐴\B

𝐴

𝐵
Probability Diagram
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𝐼 𝑋; 𝑌𝐻 𝑋|𝑌 𝐻 𝑌|𝑋

𝐻 𝑋

𝐻 𝑌

𝐻 𝑋, 𝑌

𝑋

𝑌
Information Diagram

𝑃 𝐴 ∩ 𝐵 𝑃 𝐵\A

𝑃 𝐴

𝑃 𝐵

𝑃 𝐴 ∪ 𝐵

𝑃 𝐴\B

𝐴

𝐵
Probability Diagram
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Channel Capacity

“Operational”: max rate at which reliable
communication is possible

“Information”: 
𝐩ഫ

[bpcu]

Arbitrarily small error 
probability can be achieved.

Shannon [1948] shows that these two quantities are actually the same.

[Section 4.2]

[Section 4.3]



Information 
Source

Destination

Channel

Received
Signal

Transmitted
Signal

Message

Recovered 
Message

Source 
Encoder

Channel 
Encoder

Digital
Modulator

Digital
Demodulator

Transmitter

Remove 
redundancy

Add 
systematic 
redundancy

Equivalent
Channel

Source 
Decoder

Channel 
Decoder
(Detector)

Receiver

Decoded
value

System Model for Section 3.4

X: channel input

Y: channel output

In Chapter 3, we 
studied how to find the 
optimal decoder.



Some results from Section 3.3-3.4
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Under appropriate assumptions, minimum distance decoder is optimal.



Information 
Source

Destination

Message

Recovered 
Message

Source 
Encoder

Channel 
Encoder

Transmitter

Remove 
redundancy

Add systematic 
redundancy

Equivalent
Channel

X: channel input

Y: channel output
Source 
Decoder

Channel 
Decoder
(Detector)

Receiver

Decoded
value

System Model for Section 3.5

We  then introduced 
the channel encoder 
box.



Channel 
Encoder

[3.62] Block Encoding

k bits k bits k bits n bits n bits n bits

X

𝒏, 𝒌 code

Code rate = 
𝒌
𝒏



Channel 
Encoder

[3.62] Block Encoding

k bits k bits k bits n bits n bits n bits

X

𝒏, 𝒌 code

Code rate = 
𝒌
𝒏

Example: Repetition Code

Channel 
Encoder

1 bit 1 bit 1 bit 5 bits 5 bits 5 bits

X

𝟓, 𝟏 code

Code rate = 
𝟏
𝟓

1111100000111111     0     1



Channel 
Encoder

X

[3.62] Block Encoding

k bits n bits

Codebook

𝒔പ ଵ
𝐬പ ଶ

𝐬പ ଷ

𝐬പ ସ

𝐱പ ଵ

𝐱പ ଶ

𝐱പ ଷ

𝐱പ ସ

𝑀 ൌ 2௞ possibilities

Choose 𝑀 ൌ 2௞ from 
2௡ possibilities to be 
used as codewords.

[Figure 13] 



Repetition Code
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Review: Channel Encoder and Decoder
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N
oi
se
 &
 In

te
rf
er
en

ce

Channel

Received
Signal

Transmitted
Signal

Message (Data block)

Recovered Message

Channel 
Encoder

Digital
Modulator

Channel 
Decoder

Digital
Demodulator

Add 
systematic 
redundancy

0

1

0

1

p

1-p

p

1-p

minimum 
distance decoder

k bits k bits k bits
n bits n bits n bits

Binary Symmetric 
Channel with 
p < 0.5

𝒔പ ଵ
𝐬പ ଶ

𝐬പ ଷ

𝐬പ ସ

𝐱പ ଵ

𝐱പ ଶ

𝐱പ ଷ

𝐱പ ସ

𝑀 ൌ 2௞ possibilities

Choose 𝑀 ൌ 2௞ from 
2௡ possibilities to be 
used as codewords.



Example: Repetition Code
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 Original Equivalent Channel:

 BSC with crossover probability p = 0.01

 New (and Better) Equivalent Channel:

 Use repetition code with n = 5 at the transmitter
 Use majority vote at the receiver
 New BSC with

0

1

0

1

p

1-p

p

1-p

0

1

0

1

p

1-p

p

1-p

Repetition 
Code with 
n = 5

Majority 
Vote

0

1

0

1

𝑝෤ ൌ                                                            ൎ 10ିହ5
3 𝑝ଷ 1 െ 𝑝 ଶ ൅ 5

4 𝑝ସ 1 െ 𝑝 ଵ ൅ 5
5 𝑝ହ 1 െ 𝑝 ଴

[Figure 14]



[From ECS315]
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MATLAB
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close all; clear all;

% ECS315 Example 6.58
% ECS452 Example 3.66
C = [0 0 0 0 0; 1 1 1 1 1]; % repetition code

p = (1/100);
PE_minDist(C,p)

>> PE_minDist_demo1

ans =
9.8506e-06

Code C is defined by putting all its (valid) 
codewords as its rows. For repetition 
code, there are two codewords: 00..0 and 
11..1. 

Crossover probability of the binary 
symmetric channel.



MATLAB
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function PE = PE_minDist(C,p)
% Function PE_minDist_3 computes the error probability P(E) when code C
% is used for transmission over BSC with crossover probability p.
% Code C is defined by putting all its (valid) codewords as its rows.
M = size(C,1);
k = log2(M);
n = size(C,2);

% Generate all possible received vectors
Y = dec2bin(0:2^n-1)-'0';

% Normally, we need to construct an extended Q matrix. However, because
% each conditional probability in there is a decreasing function of the
% Hamming distance, we can work with the distances instead of the
% conditional probability. In particular, instead of selecting the max in
% each column of the Q matrix, we consider min distance in each column.
dmin = zeros(1,2^n);
for j = 1:(2^n)

% for each received vector y,
y = Y(j,:);
% find the minimum distance (the distance from y to the closest
% codeword)
d = sum(mod(bsxfun(@plus,y,C),2),2);
dmin(j) = min(d);

end

% From the distances, calculate the conditional probabilities.
% Note that we compute only the values that are to be selected (instead of
% calculating the whole Q first).
n1 = dmin; n0 = n-dmin;
Qmax = (p.^n1).*((1-p).^n0);
% Scale the conditional probabilities by the input probabilities and add 
% the values. Note that we assume equally likely input.
PC = sum((1/M)*Qmax);
PE = 1-PC;
end



MATLAB
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Example: Repetition Code
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 Original Equivalent Channel:

 BSC with crossover probability p

 New (and Better) Equivalent Channel:

 Use repetition code at the transmitter
 Use majority vote at the receiver

 New BSC with new crossover probability 

0

1

0

1

0

1

0

1

p

1-p

p

1-p

0

1

0

1

p

1-p

p

1-p

Repetition 
Code with 
n = 5

Majority 
Vote



MATLAB
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close all; clear all;

% ECS315 Example 6.58
% ECS452 Example 3.66
C = [0 0 0 0 0; 1 1 1 1 1];

syms p; 
PE = PE_minDist(C,p)
pp = linspace(0,0.5,100);
PE = subs(PE,p,pp);
plot(pp,PE,'LineWidth',1.5)
xlabel('p')
ylabel('P(E)')
grid on

>> PE_minDist_demo2

PE =
(p - 1)^5 + 10*p^2*(p - 1)^3 - 5*p*(p - 1)^4 + 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p

P
(E
)



Searching for the best encoder

31

 Now that we have MATLAB function PE_minDist, 
for specific values of n, k,
we can try to search for the encoder that minimizes the error 
probability.

 Recall that, from Example 3.64, there are 
௡ ௡

௞ reasonable encoders.

 Even for small n and k, this is a large space to look at every 
possible cases.



Example: Repetition Code
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0

1

0

1

p

1-p

p

1-p

Repetition 
Code

Majority 
Vote

0

1

0

1

𝒏

1 𝑝 ൌ 0.1

3 3
2 𝑝ଶ 1 െ 𝑝 ൅ 3

3 𝑝ଷ ൎ 0.0280

5 5
3 𝑝ଷ 1 െ 𝑝 ଶ ൅ 5

4 𝑝ସ 1 െ 𝑝 ଵ ൅ 5
5 𝑝ହ ൎ 0.0086

7 ൎ 0.0027
9 ൎ 8.9092 ൈ 10ିସ

11 ൎ 2.9571 ൈ 10ିସ

𝑝 ൌ 0.1



Channel Capacity
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Channel Capacity

“Operational”: max rate at which reliable
communication is possible

“Information”: 
𝐩ഫ

[bpcu]

Arbitrarily small error 
probability can be achieved.

Shannon [1948] shows that these two quantities are actually the same.

[Section 4.2]

[Section 4.3]
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Channel Capacity
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Channel Capacity

“Operational”: max rate at which reliable
communication is possible

“Information”: 
𝐩ഫ

[bpcu]

Arbitrarily small error 
probability can be achieved.

Shannon [1948] shows that these two quantities are actually the same.



MATLAB
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function H = entropy2s(p)
% ENTROPY2 accepts probability mass function 
% as a row vector, calculate the corresponding 
% entropy in bits.
p=p(find(abs(sort(p)-1)>1e-8)); % Eliminate 1
p=p(find(abs(p)>1e-8)); % Eliminate 0
if length(p)==0

H = 0;
else

H = simplify(-sum(p.*log(p))/log(sym(2)));
end

function I = informations(p,Q)
X = length(p);
q = p*Q;
HY = entropy2s(q);
temp = [];
for i = 1:X

temp = [temp entropy2s(Q(i,:))];
end
HYgX = sum(p.*temp);
I = HY-HYgX;



Capacity calculation for BAC
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Capacity of 0.0918 bits is achieved by  0.5380,  0.4620p 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

p0
I(X

;Y
)

0

1

0

1

0.9

0.1

0.4

0.6

X Y

𝒑 𝟎 ൌ 𝒑𝟎

𝒑 𝟏 ൌ 𝟏 െ 𝒑𝟎

0.1 0.9
0.4 0.6

Q
 

  
 



Capacity calculation for BAC
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close all; clear all;
syms p0
p = [p0 1-p0];
Q = [1 9; 4 6]/sym(10);

I = simplify(informations(p,Q))

p0o = simplify(solve(diff(I)==0))

po = eval([p0o 1-p0o])

C = simplify(subs(I,p0,p0o))

eval(C)

>> Capacity_Ex_BAC
I =
(log(2/5 - (3*p0)/10)*((3*p0)/10 - 2/5) - log((3*p0)/10 + 3/5)*((3*p0)/10 + 

3/5))/log(2) + (log((5*2^(3/5)*3^(2/5))/6)*(p0 - 1))/log(2) + 

(p0*log((3*3^(4/5))/10))/log(2)

p0o =
(27648*2^(1/3))/109565 - (69984*2^(2/3))/109565 + 135164/109565

po =
0.5376    0.4624

C =
(log((3*3^(4/5))/10)*((27648*2^(1/3))/109565 - (69984*2^(2/3))/109565 + 
135164/109565))/log(2) - (log((104976*2^(2/3))/547825 - (41472*2^(1/3))/547825 + 
16384/547825)*((104976*2^(2/3))/547825 - (41472*2^(1/3))/547825 + 
16384/547825) + log((41472*2^(1/3))/547825 - (104976*2^(2/3))/547825 + 
531441/547825)*((41472*2^(1/3))/547825 - (104976*2^(2/3))/547825 + 
531441/547825))/log(2) + (log((5*2^(3/5)*3^(2/5))/6)*((27648*2^(1/3))/109565 -
(69984*2^(2/3))/109565 + 25599/109565))/log(2)

ans =
0.0918

0

1

0

1

0.9

0.1

0.4

0.6

X Y
0.1 0.9
0.4 0.6

Q
 

  
 



Same procedure applied to BSC
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close all; clear all;
syms p0
p = [p0 1-p0];
Q = [6 4; 4 6]/sym(10);

I = simplify(informations(p,Q))

p0o = simplify(solve(diff(I)==0))

po = eval([p0o 1-p0o])

C = simplify(subs(I,p0,p0o))

eval(C)

>> Capacity_Ex_BSC
I =
(log((5*2^(3/5)*3^(2/5))/6)*(p0 - 1))/log(2) -
(p0*log((5*2^(3/5)*3^(2/5))/6))/log(2) - (log(p0/5 + 
2/5)*(p0/5 + 2/5) - log(3/5 - p0/5)*(p0/5 -
3/5))/log(2)
p0o =
1/2
po =

0.5000    0.5000
C =
log((2*2^(2/5)*3^(3/5))/5)/log(2)
ans =

0.0290

0

1

0

1

0.4

0.6

0.4

0.6

X Y
0.6 0.4
0.4 0.6

Q
 

  
 



Blahut–Arimoto algorithm
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function [ps C] = capacity_blahut(Q)
% Input:     Q  = channel transition probability matrix
% Output:    C  = channel capacity
%            ps = row vector containing pmf that achieves capacity

tl = 1e-8; % tolerance (for the stopping condition)
n = 1000; % max number of iterations (in case the stopping condition 

% is "never" reached") 
nx = size(Q,1); pT = ones(1,nx)/nx; % First, guess uniform X.
for k = 1:n

qT = pT*Q;
% Eliminate the case with 0
% Column-division by qT
temp = Q.*(ones(nx,1)*(1./qT));
%Eliminate the case of 0/0
l2 = log2(temp); 
l2(find(isnan(l2) | (l2==-inf) | (l2==inf)))=0;
logc = (sum(Q.*(l2),2))';
CT = 2.^(logc);
A = log2(sum(pT.*CT)); B = log2(max(CT));
if((B-A)<tl)

break
end
% For the next loop
pT = pT.*CT;     % un-normalized
pT = pT/sum(pT); % normalized
if(k == n)

fprintf('\nNot converge within n loops\n')
end

end
ps = pT;
C = (A+B)/2; [capacity_blahut.m]



Capacity calculation for BAC: a revisit
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close all; clear all;

Q = [1 9; 4 6]/10;

[ps C] = capacity_blahut(Q)

>> Capacity_Ex_BAC_blahut
ps =

0.5376    0.4624
C =

0.0918

0

1

0

1

0.9

0.1

0.4

0.6

X Y
0.1 0.9
0.4 0.6

Q
 

  
 



Richard Blahut

42

 Former chair of the 
Electrical and 
Computer 
Engineering 
Department at the 
University of Illinois 
at Urbana-Champaign

 Best known for 
Blahut–Arimoto
algorithm 
(Iterative 
Calculation of C)

Toby Berger



Claude E. Shannon Award
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Claude E. Shannon (1972)

David S. Slepian (1974)

Robert M. Fano (1976)

Peter Elias (1977)

Mark S. Pinsker (1978)

Jacob Wolfowitz (1979)

W. Wesley Peterson (1981)

Irving S. Reed (1982)

Robert G. Gallager (1983)

Solomon W. Golomb (1985)

William L. Root (1986)

James L. Massey (1988)

Thomas M. Cover (1990)

Andrew J. Viterbi (1991)

Elwyn R. Berlekamp (1993)

Aaron D. Wyner (1994)

G. David Forney, Jr. (1995)

Imre Csiszár (1996)

Jacob Ziv (1997)

Neil J. A. Sloane (1998)

Tadao Kasami (1999)

Thomas Kailath (2000)

Jack KeilWolf (2001)

Toby Berger (2002)

Lloyd R. Welch (2003)

Robert J. McEliece (2004)

Richard Blahut (2005)

Rudolf Ahlswede (2006)

Sergio Verdu (2007)

Robert M. Gray (2008)

Jorma Rissanen (2009)

Te Sun Han (2010)

Shlomo Shamai (Shitz) (2011)

Abbas El Gamal (2012)

Katalin Marton (2013)

János Körner (2014)

Arthur Robert Calderbank (2015)

Alexander S. Holevo (2016)
David Tse (2017) 

[ http://www.itsoc.org/honors/claude-e-shannon-award ]
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Raymond Yeung
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 BS, MEng and PhD 
degrees in electrical 
engineering from 
Cornell University 
in 1984, 1985, and 
1988, respectively.

เรย์มอนด์ ยึง



Raymond Yeung
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 Introduce, for the first time in a 
textbook, 
 analytical theory of I-Measure and 
 geometrically intuitive information 

diagrams
 Establish a one-to-one correspondence 

between Shannon’s information 
measures and set theory.

 Rooted in works by G. D. Hu, by H. 
Dyckman, and by R. Yeung et al.



Toby Berger with Berger plaque
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Douglas Chan and 802.11n
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Douglas Chan and 802.11n
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Channel Capacity: Special Cases
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 Channel with Nonoverlapping Outputs (NO2)
 There is only one non-zero element in each column of its 

matrix.



is achieved by uniform input probabilities.

 Ex. Noiseless Binary Channel: 

 Weakly Symmetric Channel
 (1) all the rows of are permutations of each other and

(2) all the column sums are equal.



is achieved by uniform input probabilities.

 Ex. Binary Symmetric Channel: [bpcu]

2log | |

 2log | | H r

[Ex. 4.27]

[4.30]

[Defn 4.36]

[4.37]where 𝐫പ is any row from the 𝐐 matrix.


