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Recall: Entropy

4.29. Reminder:
(a) Some definitions involving entropy

(i) Binary entropy function: h(p) = —plogs p — (1 — p) logs (1 — p)
(ii) H(X)=—> p(x)logyp(x)

(i) H(p) = — 3 pilogs (1)

(b) A key entropy property that will be used frequently in this section is that for any random
variable X,
H(X) <logy |X| with equality iff X is uniform.

[Page 70]
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Recall: Entropy

* Entropy measures the amount of uncertainty (randomness)
in a RV.

® Three formulas for calculating entropy:
Given a pmf pX(X) ofa RV X,
[H(X) = - Zx px(X) logsz(x).]

Given a probability vector P, o
H(p) = — X, p;log,p;. S Y
Given a number p € [0,1] 0
bi ol
entropy © H(®) = hy,(p) = —plogap — (1 = p)logz(1 = p):

function T T T

b/

—

o Operational meaning: Entropy of a random variable is

the average length of its shortest description.




Recall: Entropy

* Important Bounds

0 . .  <HX) <log,|Sx|
deterministic uniform

® The entropy of a uniform (discrete) random variable:
H(X) = log,|Sx]
® The entropy of a Bernoulli random variable:
H(p) = h,(p) = —plog,p — (1 — p)log, (1 —p)

binary entropy function
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Information-Theoretic Quantities

Information Diagram




Entropy and Joint Entropy

° Entropy
H(X) = — X p(x)log,p(x)

Amount of randomness in X H(X)

H(Y) = -2, q()log,q(y)

X
Amount of randomness in Y

* Joint Entropy e

HX,Y) = = Xxy) P(x,¥)log, p(x, ¥)

Amount of (combined) randomness in (X, Y) pair
In general, HX,Y)#=HX)+ H(Y)

There might be some shared randomness between XandY.

H(Y)

=




Conditional Entropies

PlY = y]
——
Amount of randomness in Y H(Y) =— Z q(y)log,q(y) = H (ﬂ)
ve)
given a particular value X PIY = y|X
—
Amount of randomness still HY|X =x)=H({|x) = — Q(y|x)log,Q(y|x)

remained in Y when we ye)Y

know that X = x.

- | — |~ ©
average of H(Y|x)
The average amount of H(Y|X) = z p(x)H (Y |x)
randomness still remained in xeX
Y when we know X = H(X,Y) — H(X)
(-, N

Apply the entropy calculation to a row from the Q matrix




Conditional Entropies

Amount of randomness in Y

Amount of randomness still
remained in Y when we
know that X = Xx.

The average amount of
randomness still remained in

Y when we know X

(-,

pir=
H(Y) = - Z q(y)logzq(y) = H (g)
ye)
given a particular value X PIY = y|X
— —
HYX=x)=HY|x)=—- ) Q(y|x)log,Q(y|x)

ye)

Apply the entropy calculation to a row from the Q matrix

x | I

average of H(Y|x)

HIYIX) = ) pGOH(Y|)

xeX
=HX,Y) —HX)
=H)—-I1(X;Y)

= Q




Diagrams

Venn Diagram

B
P(4)
A >
L

AUB

Information Diagram

Probability Diagram




Diagrams

Probability Diagram Information Diagram

P(A)




Diagrams
Probability Diagram Information Diagram

P(4) H(X)

P(A\B) [P(4 n B)| P(B\A)

P(B) H(Y)

P(B\A) = P(AUB) — P(4) H(Y|X) = HX,Y) — H(X)

(- y
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Channel Capacity

[Section 4.2]

“Operational”: max rate at which reliable

/ communication is possible

Channel Capacity Arbitrarily small error

\ probability can be achieved.

“Information”:| max I (X; Y)J [bpcu]

[Section 4.3]

Shannon [1948] shows that these two quantities are actually the same.

(-,




Message

Information w Source i
Source Encoder i
Remove | X: channel input
redundancy : !
| Equivalent i
| Channel i
Rﬁ:overed iDeci)ded i
€SSagocC ' |
. & | Valuc Y: channel output
Wi S X Channel !
Destination ‘ See — Decoder l
l Decoder _ (Detector) ' :
Receiver In Chapter 3, we

studied how to find the

k optimal decoder. /




a %@E» N
Some results from Section 3.3-3.4£W

Example 3.66.

(1) MAP decoder is optimal. (It minimizes P(£)).

(2) ML decoder is suboptimal. However, it can be optimal (same P(&) as
the MAP decoder) when the codewords are equally-likely.

(3) ML decoder is the same as the minimum distance decoder when the
crossover probability of the BSC p is < 0.5 (which is usually the case).

53

G [Under appropriate assumptions, minimum distance decoder is optimal }

/




Information W Source Channel
Source Encoder Encoder

i i Decoder
Destination l Decoder _ (Detector) '

N

R N
Gpje
System Model for Section 3.5 W

MeSS&ge Transmitter

Remove Add systematic X: channel input

redundancy redundancy -
Equivalent
Channel
Rﬁ:overed Deci)ded
essage
- g value Y: channel output

/\

S Channel

We then introduced
the channel encoder

box. ///

Receiver
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[3.62] Block Encoding "

CITTTTETETT T 1 1] S i 2 LT T 11T
- . Encoder - . T
kbits kbits [k bits n bits nbits n bits

(n, k) code

k

Code ratezz
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[3.62] Block Encoding "

S Channel X

Encoder - .
n bits nbits n bits

CITT T T [ I01]

A N _/

kbits kbits kbits

(n, k) code

k
Code rate = -

Example: Repetition Code

S X
SR —

. Encoder
1 bit 1 bit 1 bit

~——

5bits 5 bits 5 bits

—

(5,1) code

1
Code rate = =




™
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13.62] Block Encoding

Channel
Encoder

M = 2k possibilities

Choose M = 2¥ from
2" possibilities to be
used as codewords.

[Figure 13]

index 7 | info-block s codeword x
1 s =000...0 | x™M =
Codebook 2 |s®=000...1 | x® =

M [ s™M =111...1[x™M = /
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Repetition Code
Example 3.63. Find the codebook and g_)&l& rate for the hich

uses repetition code with m codewerd Ly le -2
Y—
codeboolk: | V) £ )
— 2
;.#,_blx/kryo O= o000 -

ifo -t |
( {4 4211 19_ ot
k




:
Review: Channel Encoder and Decoder

Choose M = 2K from
2n possibilities to be
used as codewords.

Message (Data block)
Channel

_ Encoder

A N /

k bits k bits k bits

A J/

n bits n bits

Add

systematic

redundancy

Binary Symmetric
Channel with
p<0.5

Channel
Decoder

Recovered Message

@ minimum
k distance decoder /




Example: Repetition Code [Figure 14]

° Original Equivalent Channel:

1 &—
BSC with crosgover probability p = 0.01

® New (and Better) Equivalent Channel:

. e ) —
o / . : — P
Repetltl.on / | Majori ty 0 S 0
amees Code with g . Vote 5
= _ : 1 5= 1

N y

Use repetition code with n = 5 at the transmitter

Use majority vote at the receiver

New BSC with ¢ = (g)p3(1—p)2 +(i)p4(1—p)1+ (g)ps(l—p)oz 1075

™
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One method of reducing the error rate is to use error-correcting

codes: 1= - = - - — *-‘

Icncodu __,QD_Z, clrrogul ‘._'2,
-—T—'_" - —Jl

e _——

i

A simple error-correcting code is the repetitio code. Exam-
ple of such code is described below:

Two ways to calculate the probability of error:

(a) (transmission) error occurs if and only if the number of bits

in error are > 3.
e.mc.%l; 8 eyvor bits

“ s
?EP(E)= (:)P:l*"f"t * (:)p"u—f) h(:)p"—[)vﬁ(

(b) (transmission) error occurs if and only if the number of bits
not in error are<2 —0 1 2

with r:o.of

-5
F(&) =10

o= () orr ()0  (Dow

- - E £ . t b
0O oos 01 015 02 02 03 035 04 045 05

P

Gple
[From ECS315]

™
-




MATLAB

close all; clear all;

% ECS315 Example 6.58
% ECS452 Example 3.66

C=[00000; 1111

1]:1 % repetition code

p = (1/100);
PE_minDist(C,p)

11..1.

\_

/" Code C is defined by putting all its (Valid)\

codewords as its rows. For repetition >> PE_minDist demol
code, there are two codewords: 00..0 and

Y, ans =

9.8506e-06

(Crossover probability of the binary

Lsymmetric channel.

|




MATLAB

function PE = PE_minDist(C,p)
Function PE minDist 3 computes the error probability P(E) when code C
6 Is used for transmission over BSC with crossover probability p.

= =

% Code C is defined by putting all its (valid) codewords as its rows.
M = size(C,1);

k = log2(M);

n = size(C,2);

% Generate all possible received vectors
Y = dec2bin(0:2"n-1)-"0";

% Normally, we need to construct an extended Q matrix. However, because
% each conditional probability in there iIs a decreasing function of the
% Hamming distance, we can work with the distances iInstead of the
% conditional probability. In particular, instead of selecting the max in
% each column of the Q matrix, we consider min distance in each column.
dmin = zeros(1,2™n);
for J = 1:(2™n)

% for each received vector vy,

y =Yd,:);

% Ffind the minimum distance (the distance from y to the closest

% codeword)

d = sum(mod(bsxfun(@plus,y,C),2),2);

dmin(jJ) = min(d);
end

% From the distances, calculate the conditional probabilities.

% Note that we compute only the values that are to be selected (instead of
% calculating the whole Q first).

nl = dmin; nO = n-dmin;

Qmax = (p-"nl).*((1-p)-"n0);

% Scale the conditional probabilities by the input probabilities and add

% the values. Note that we assume equally likely input.

PC = sum((1/M)*Qmax) ;
PE = 1-PC;
end

/
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MATLAB

® Annotateda version [POstea @ 3rM On rep 21, upaadtea @ 5rm on repn 28]

Slides [Posted @ 9PM on Feb 8; Updated @ 4:30PM on Feb 14, @ 3PM on Feb 21, and @ 5PM on
Feb 28]

Exercise 5 Solution [Posted @ 10AM on Feb 25]

Exercise 6 Solution [Posted @ 10AM on Feb 25]

Exercise 7 Solution [Posted @ 10AM on Feb 25]

MATLAB: BSC_demo.m, BAC_demo.m, DMC_demo.m, DMC_Analysis_demo.m,
DMC_Channel_sim.m, BSC_decoder_ALL_demo.m, DMC_decoder_DIY_demo.m,
DMC_decoder_ALL_demo.m, DMC_decoder_MAP_demo.m, DMC_decoder_ML_demo.m

e MATLAB: PE_minDist.m, PE_minDist_demol .m, PE_minDist_demo2.m

e Chapter 4: Mutual Information and Channel Capacity [Posted @ 11AM on Feb 20]

e Annotated version [Posted @ 5PM on Feb 28; Updated @ 5PM on Mar 7 and @ 3PM on Mar 8]

MATLAB: capacity_blahut.m

Exercise 8 Solution [Posted @ 9AM on Mar 6]

Exercise 9 Solution [Posted @ 5PM on Mar 7]

Exercise 10 Solution [Posted @ 3PM on Mar 19]

Slides [Posted @ 5PM on Mar 7; Updated @ 3PM on Mar 8]

e Chapter 5- Channel Coding




Example: Repetition Code

° Original Equivalent Channel:

1 &—
BSC with crosgover probability p

® New (and Better) Equivalent Channel:

4 T T\ )
Repetition ( -

mmme Code with

n:

N Sl y

Maj ority
Vote

Use repetition code at the transmitter
Use majority vote at the receiver

New BSC with new crossover probability p




MATLAB

close all; clear all;

% ECS315 Example 6.58 9% SR SN TSNS SN NS S S NS S 0 4
% ECS452 Example 3.66 7] AN S Sy S
C=[00000; 11111]; 0.35 - e
syms p; o=
PE = PE_minDist(C,p) 02 -
pp = linspace(0,0.5,100); N4
FIE = SIESPE. [P [BE)E -
plot(pp.PE, "LineWidth*,12.5) | _— =
Xlabel(.p.) 0 0.05 0.1 0.15 0.2 O.p25 03 035 04 045 05
ylabel("P(E)")

grid on

>> PE_minDist_demo?2

PE =
@ (p - 175 + 10*p"2*(p - 1)™3 - 5*p*(p - 1) + 1

/




Searching for the best encoder

® Now that we have MATLAB function PE_minDist,
for specific values of n, &,

we can try to search for the encoder that minimizes the error

probability.
* Recall that, from Example 3.64, there are
n n
(?\/I) = (; k) reasonable encoders.

* Even for small n and &, this is a large space to look at every

possible cases.




Example: Repetition Code

J

4 ~ ]
1-p
. Repetition Ma]orlty X — S
; Code Vote — p
14—31
P
= O 1

__
1 p=0.1
’ (3) p*(1—p) + (g) p? ~ 0.0280
’ (3) p(1-p)+ (Z) p*(1—p) + (g) pS ~ 0.0086
7 ~ 0.0027
9 ~ 8.9092 x 10~*
1 ~ 2.9571 x 1074




Channel Capacity

[Section 4.2]

“Operational”: max rate at which reliable

/ communication is possible

Channel Capacity Arbitrarily small error

\ probability can be achieved.

“Information”:| max I (X; Y)J [bpcu]

[Section 4.3]

Shannon [1948] shows that these two quantities are actually the same.

(-,
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Channel Capacity

“Operational”: max rate at which reliable

/ communication is possible

Channel Capacity Arbitrarily small error

\ probability can be achieved.

“Information”: {max 1(X; Y)} [bpcu]
P

Shannon [1948] shows that these two quantities are actually the same.

(-




MATLAB

function H = entropy2s(p)
% ENTROPY2 accepts probability mass function
% as a row vector, calculate the corresponding
% entropy in bits.
p=p(Ffind(abs(sort(p)-1)>1e-8)); % Eliminate 1
p=p(find(abs(p)>1e-8)); % Eliminate O
1T length(p)==

H=0;
else

H = simplify(-sum(p.*log(p))/log(sym(2)));
end

function | = Informations(p,Q)
X = length(p);
q = p*Q;
HY = entropy2s(q);
temp = [1;
for 1 = 1:X
temp = [temp entropy2s(Q(i,:))];
end
HYgX = sum(p.*temp);

@ 1 = HY-HYgX;
N




Capacity calculation for BAC

by 0 o 11 e
X 04/ v o N
1) =\1 — 3 R 0.06] - 77777 ,,,,, ,,,,, ,
Py T Gomf -

o [0 09]
104 06 o

0 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Po

Capacity of 0.0918 bits is achieved by P= [0.5380, 0.4620]

(- p




Capacity calculation for BAC

0 0.1 0.9
X 0.4 Y Q —
pﬂ)lm)léé;ijl 0.4 0.6

close all; clear all; >> Capacity_Ex_BAC

syms pO —1 =

p = [pO 1-p0]; (log(2/5 - 3*P0)/10y(3*P0)/10 - 2/5) - log(3*P0)/ 10 + 3/5yx(3*p0)/ 10 +

Q=11 9; 4 6]/sym(10); 3/5))/log(2) + (log((5%2°(3/5)¥3"2/5))/6yx(PO0 - 1))/log(2) +
(PO0*log(3#3"(4/5))/10))/log(2)

(27648%2\(1/3))/109565 - (69984%2°%(2/3))/109565 + 135164/109565

1 = simplify(informations(p,Q))- [+pm>:

po =
0.5376 0.4624
C =
(log((3*3’\(4/5))/10)*((27648*2/‘(1/3))/109565 - (69984%27(2/3))/109565 +
135164/109565))/log(2) - (log((l04976*2’\(2/3))/547825 - (41472%27(1/3))/547825 +

— i = 16384/547825)%((104976%2°(2/3))/ 547825 - (41472%2°\(1/3))/ 547825 +
C Simp I fy(SUbS ( 1,p0, pOO)) 16384/547825) + log((41472%2\(1/3))/ 547825 - (104976%2(2/3))/ 547825 +
531441/547825)%((41472%2°(1/3))/ 547825 - (104976%2°(2/3))/ 547825 +
eval (C) 531441/547825))/log(2) + (log((5*2(3/5)*3"\(2/5))/6)*((27648%2(1/3))/ 109565 -

(69984%2(2/3))/109565 + 25599/109565))/log(2)
ns —

d!:" 0.0918 o

pOo = simplify(solve(diff(1)==0))-

po = eval([pOo 1-p00o])




Same procedure applied to BSC

06 0.4
p(l)—l Po 14 04 0.6

close all; clear all; >> Capacity_Ex_BSC

syms pO —1 =

p = [pO0 1-pO0]; (log((5*27(3/5)*3/(2/5))/6)*(p0 - 1))/log(2) -

Q = [6 4; 4 6]/sym(10); (p0*log((5%2°(3/5)*3™(2/5))/6))/10g(2) - (log(p0/5 +
2/5)%(p0/5 + 2/5) - log(3/5 - p0/5)*(p0/5 -

I simplify(informations(p,Q))- 3/5))/log(2)

pOo =
pOo = simplify(solve(diff(l)==0)}r1/2
po =
po = eval([pOo 1-p0Oo]) 0.5000 0.5000

C = simplify(subs(l ,po,pOO))—rl((:)g((Z*ZA(Z/5)*3/\(3/5))/5)/10g(2)

’—bans
eval (C) 0.0290

(-,




Blahut-Arimoto algorithm

function [ps C] capacity_blahut(Q)

% Input: Q = channel transition probability matrix
% Output: C = channel capacity
% ps = row vector containing pmf that achieves capacity

tl = 1e-8; % tolerance (for the stopping condition)
n = 1000; % max number of iterations (in case the stopping condition
% §s "never" reached™)

nx = size(Q,1); pT = ones(1,nx)/nx; % First, guess uniform X.
for k = 1:n

qT = pT*Q;

% Eliminate the case with O

% Column-division by qT

temp = Q.*(ones(nx,1)*(1./q9T));

%Eliminate the case of 0/0

12 = log2(temp);

12(find(isnan(12) | (12==-inf) | (12==inf)))=0;

logc = (sum(Q-*(12),2))";

CT = 2.~(logc);

A = log2(sum(pT.*CT)); B = log2(max(CT));

1T((B-A)<tl)

break

end

% For the next loop

pT = pT.*CT; % un-normalized

pT = pT/sum(pT); % normalized

if(k == n)

fprintf("\nNot converge within n loops\n-)
end

end
ps = pT;
K C = (A+B)/2; [capacity_blahut.m]




Capacity calculation for BAC: a revisit

j 01 09
p(l)ﬁp 1 04 06

close all; clear all; >> Capacity_Ex_BAC_blahut
‘—’PS:
Q=11 9; 4 6]/10; 0.5376 0.4624
B rC=
[ps C] = capacity blahut(Q) 0.0918




Richard Blahut

Modem Theory

® Former chair of the Toby Berger S e
Electrical and Richard € Sahut
Computer TRIIIIT
Engineering (FERNNNNER
=

Department at the

University of Illinois

at Urbana- Champaign

Best known for
Blahut—Arimoto
algorithm

(Iterative
Calculation of C)
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David S. Slepian (1974)
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Raymond Yeung

® Introduce, for the first time in a
textbook,
analytical theory of I-Measure and
geometrically intuitive information
diagrams
Establish a one-to-one correspondence

between Shannon’s information

measures and set theory.

* Rooted in works by G. D. Hu, by H.
Dyckman, and by R.Yeung et al.

A First
Course in
Information

Theory

Chapter 6

THE I-MEASURE

In Chapter 2, we have shown the relationship between Shannon's informa-
tion measures for two random variables by the diagram in Figure 2.2. For
convenience, Figure 2.2 is reproduced in Figure 6.1 with the random variables
X and ¥ replaced by X and X, respectively. This diagram suggests that
Shannon’s information measures for any n > 2 random variables may have a
set-theoretic structure,

In this chapter, we develop a theory which establishes a one-to-one cor-
respondence between Shannon’s information measures and set theory in full
generality. With this correspondence, manipulations of Shannon's informa-
tion measures can be viewed as set operations, thus allowing the rich suite of
tools in set theory to be used in information theory. Moreover, the structure
of Shannon’s information measures can easily be visualized by means of an

H 6, X;)
H{XiXy) HOXD
2
f Y
H(X}WH(MJ

Figure 8.1, Rel hip between tropies and mutual inf for two random vanables.
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Douglas Chan and 802.11n

$IEEE

Contributions to this amendment was received from the follc
IEEE Standard for

Bill Abbott Vinko E-I‘EEg : Information technology—
Santosh Abraham Mustafa Eroz Telecommunications and information
Tomoko Adachi Stefan Fechtel Loca?::::la;ge‘:r';mﬁ:: :‘I:es;er?:works—
Dmitry Akhmetov Paul Feinberg Specific requirements
Carlos Aldana Matthew Fischer Part 11: Wireless LAN Medium Access Control (MAC)
Dave Andrus Guido Frederiks and Physical Layer (PHY) Specifications
Micha Anholt Takashi Fukagawa Amendment 5: Enhancements for Higher
Tsuguhide Aoki Patrick Fung Throughput
Yusuke Asai Edoardo Gallizio
Geert Awater
David Ba gb}’ IEEE Computer Society
gg‘ ffageﬂ ea B e s Coniten
er1 Banerjee
Amit Bansal
Gal Basson
Anuj Batra
John Benko e EEE 802 0200
Mathilde Benveniste e s e s TR ST
Bjorn Bjerke el e
Yufe1 Blakenship
Damiel Borges Huw-Ling Lou
Douglas Chan Adina Matache
Jerry Chang Yuh-Ren Jauh Laurent Mazet
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Douglas Chan and 802.11n

September 2005 doc.: IEEE 802.11-05/0946r0

Improving IEEE 802.11 Performance with Cross-Layer Design and
Multipacket Reception via Multiuser Iterative Decoding

Date: 2005-09-20

Authors:
Name Company |Address Phone email
Douglas S. Chan | Cornell School of Electrical | 607-254-8818 | dsc29@comell.edu
Prapun University and C omputer pe92@cornelledu
— Engmeering,
Suksompong .- S
: = Cornell University. —
Jun Chen _ - je353@cornell.edu
Ithaca, NY 14853
Tobv Berger 607-255-1447 | berger(@ece.cornell.edu
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Channel Capacity: Special Cases
e Channel with Nonoverlapping Outputs (NO?)

There is only one non-zero element in each column of its Q

matrix.
C=log, | X|
is achieved by uniform input probabilities.

Ex. Noiseless Binary Channel: C = 1 [bpcu]

° Weakly Symmetric Channel

(1) all the rows of Q are permutations of each other and

(2) all the column sums are equal.

{C — 1()g2 | y | —H (E)] where I is any row from the Q matrix.

is achieved by uniform input probabilities.

Ex. Binary Symmetric Channel: € =1 — H (p) [bpcu]




